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The effect of overlapping pump and gate pulses on time- and frequency-gated spontaneous emission spectra
is explored for a model of material dynamics that accounts for strong nonadiabatic and electron-vibrational
coupling effects, vibrational relaxation, and optical dephasing, thus representing characteristic features of
photoinduced excited-state dynamics in large molecules in the gas phase or in condensed phases. The behaviors
of the sequential, coherent, and doorway-window contributions to the spontaneous emission spectrum are
studied separately. The interrelation between the sequential and coherent contributions is demonstrated to be
sensitive to the carrier frequencies of the pump and gate pulses and also to the optical dephasing rate, opening
the possibility of an experimental determination of the latter. The coherent contribution is shown to dominate
the spectrum at specific emission frequencies.

1. Introduction

The spontaneous emission (SE) spectrum is known to consist
of two contributions, which can be termed as sequential
(excitation precedes SE) and coherent (excitation and SE coexist
in time). For steady-state SE spectra, a subtle interrelation exists
between the two contributions, which depends crucially on the
optical dephasing (OD) rate and is responsible for the partition-
ing of the SE into the fluorescence and resonance Raman parts.1,2

If the SE is time-resolved, then the coherent contribution is
important at short times (of the order of the duration of the
excitation pulse), whereas the sequential contribution dominates
the SE at longer times, when the processes of excitation and
SE are well separated in time.1-6 It is in this latter case that the
time- and frequency-resolved SE spectra mirror the excited-
state electronic population dynamics and vibrational wave-packet
dynamics.2,7,8

To achieve temporal and spectral resolution of the SE
simultaneously, one normally employs the so-called fluorescence
up-conversion technique, passing the total emitted field through
a spectrometer and a temporal gating device.9,10 The spectra
obtained in this manner are referred to as time- and frequency-
gated (TFG) SE spectra.4,11-15 From the theoretical point of
view, the TFG SE signal can be represented as the sum of the
doorway-window (DW) term, which determines the signal at
those times at which the pump and gate pulses do not overlap
any more, and the transient terms, which contribute to the signal
at shorter times.7,13,16

Even with contemporary available laser pulses, the time
interval during which the pulses overlap may spread over a few
hundred femtoseconds. This time interval is not necessarily short
on the time scale of the dynamics of the material system. For

example, the solvation correlation functions extracted from the
TFG SE spectra of dye LDS-750 in acetonitrile17 and of
coumarine in water18 exhibit a sub-100-fs decay. The time-
dependent cuts of the TFG SE spectra of several electron
donor-acceptor complexes show coherent oscillations with a
period of ∼150-200 fs.19,20 Theoretical studies have also
demonstrated that the effects due to the pump-gate pulse overlap
affect the TFG SE peak-shift dynamics significantly.7 Therefore,
if one neglects the transient terms, then an interesting piece of
the ultrafast system dynamics may escape detection. Moreover,
the study of the TFG SE spectra in the domain of overlapping
pulses can yield unique information about the onset and decay
of various coherences (which give rise to complicated time-
dependent interference patterns21) and may help to clarify the
influence of this early stage of the evolution on the subsequent
system dynamics.

It is well known that the short-time parts of pump-probe
and other third-order spectroscopic signals with overlapping
pulses contain information on the material system relaxation8,22-43

being, in particular, sensitive to the OD rate and to the detuning
of the pump-pulse carrier frequency. The results of these studies
are not directly transferable to the TFG SE spectroscopy,
however. Indeed, if the pump and probe pulses do not overlap,
then the stimulated emission (excited state) contribution to the
transient transmittance spectrum is equivalent to the TFG SE
spectrum.2,7,15If the pulses overlap, then there is no such direct
correspondence because the TFG SE spectrum contains both
excited (sequential) and ground (coherent) contributions. More-
over, the coherent contribution to the pump-probe signal
contains the sequence “probe-pump-pump-probe”,35 which
does not contribute to the TFG SE spectrum.

The present study focuses on the exploration of the short-
time behavior of TFG SE spectra, when the pump and gate
pulses overlap and their durations are shorter than or comparable
to the time scale of the system dynamics. To gain more insight,
we study the problem analytically. A model of the material
system has been chosen, which represents generic photoinduced
excited-state dynamics in large molecules in the gas phase or
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in condensed phases. It comprises the electronic ground state
and two nonadiabatically coupled excited electronic states
coupled to a harmonic reaction mode and thus accounts for
strong nonadiabatic and electron-vibrational coupling effects.
In addition, it includes vibrational relaxation, electronic popula-
tion decay, and OD, which are described within a phenomeno-
logical relaxation model developed in ref 44.

2. Model

2.1. System Hamiltonian.We write the system Hamiltonian
as the sum of an electronic ground-state Hamiltonian,Hg, and
an excited-state Hamiltonian,He

To be more specific, we adopt a diabatic representation of the
electronic states and express the Hamiltonians as

Here the bra-ket notation is used to denote diabatic electronic
states; the summation indices in eq 3 run over all of the excited
electronic states, andhg and hi denote the vibrational Hamil-
tonians pertaining to the ground and the excited states,
respectively.εi is the vertical excitation energy of excited state
|i〉 andUij are the nonadiabatic coupling matrix elements in the
diabatic representation.

The transition dipole moment operator, which describes the
coupling of the material system with the radiation field, is
defined as follows

so that the ground electronic state|g〉 is coupled radiatively with
each excited state,|i〉, with êi being the corresponding electronic
transition dipole matrix element.

Throughout the article, we shall make use of the eigenvalue
representation of the ground- and excited-state Hamiltonians

(hereafter, the eigenvalues and eigenfunctions ofhg andHe are
denoted by Latin and Greek letters, respectively). The corre-
sponding transition frequencies are then defined as follows
(p ) 1):

We also introduce the quantitiesCni
R , which are the expan-

sion coefficients of the excited-state vibronic eigenvectors in
terms of the ground-state vibrational eigenvectors,|R〉 ≡
∑n,iCni

R |n〉|i〉. Therefore, the matrix elements of the transition
dipole operator in eq 4 are explicitly given as follows:

Most of the analytical results obtained in the present article
refer to the eigenvalue representation and are valid for any

choice ofHg andHe. For numerical illustrations, we shall use
a model of excited-state electron transfer in the normal regime,
which has been developed by Hayashi et al.45,46 and imple-
mented by the same authors as well as by Pisliakov et al.47 for
the interpretation of TFG SE experiments on the electron
donor-acceptor complex TCNE-HMB by Rubtsov and Yoshi-
hara.19,20The system Hamiltonian is given by eqs 2 and 3 with
N ) 2. The vibrational Hamiltonians,hk (k ) g, 1, 2), possess
a single harmonic mode and are written in the second quantiza-
tion representation as

The reaction mode frequency,Ω ) 0.0198 eV, is assumed to
be the same for all of the electronic states. The dimensionless
horizontal displacements of the excited-state potential curves
are the following: ∆g ) 0, ∆1 ) -1.28, and∆2 ) 1.57. The
vertical excitation energies differ byε2 - ε1 ) 0.0578 eV so
that the minima of the corresponding diabatic potential energy
surfaces are shifted by≈2.5Ω (see Figure 1). The displacement
of the minimum of the lower excited electronic state,|1〉, with
respect to the minimum of the ground state,|g〉, has been put
to zero,ε1 - Ω∆1

2/2 ) 0. The electronic interstate coupling is
of intermediate strength,U12 ) 0.007 eV. The lower excited
electronic state,|1〉, is assumed to be optically dark, whereas
state|2〉 is optically bright, so that eq 7 reduces toVRn ) Cn2

R .
2.2. Phenomenological Relaxation Model.To account for

various relaxation processes, we postulate the following kinetic
equation for the system density matrix:

Here,E(t) is an external field, and the damping operators are
defined as follows44

where

are the projection operators onto the ground and excited
electronic states, and

Figure 1. Schematic view of the potential energy surfaces of the model
system.

hk ) Ω{b†b + 1/2 -
∆k

x2
(b† + b)} (8)

∂tF(t) ) -i[H - VE(t), F(t)] - (Γel + Γvib)F(t) (9)

ΓelF(t) ) êePeF(t)Pe + êeg{PgF(t)Pe + H.c.} (10)

ΓvibF(t) ) ∑
a)e,g

νaPa(F(t)Pa - Fa{TrPaF(t)}) (11)

Pg ) |g〉〈g|, Pe ) 1 - Pg (12)

Fa ≡ Za
-1e-Ha/kT (13)

H ) Hg + He (1)

Hg ) |g〉hg〈g| (2)

He ) ∑
i)1

N

|i〉(hi + εi)〈i| + ∑
i*j

N

|i〉Uij〈j| (3)

V ≡ Vge + Veg, Vge ) Veg
† ) ∑

i)1

N

êi|g〉〈i| (4)

hg|n〉 ) εn|n〉 He|R〉 ) εR|R〉 (5)

ωRn ) εR - εn ωRâ ) εR - εâ ωnm ) εn - εm (6)

〈g|〈n|Vge|R〉 ≡ VRn ) ∑
i)1

N

Cni
Rêi (7)
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are the Boltzmann operators, withZa being the corresponding
partition functions.

The damping operators,Γel andΓvib, are responsible for the
electronic and vibrational relaxation, respectively. The first term
in eq 10 reflects the excited-state population decay, withêe being
the corresponding rate. The second term in eq 10 is responsible
for the OD (êeg is the corresponding rate), which induces the
decay of the optical coherences.Γvib has been introduced to
ensure vibrational relaxation in each electronic state to its
equilibrium form (13). Theνa can thus be regarded as the
vibrational relaxation rates.

Within the phenomenological relaxation model (9-11), one
can derive explicit expressions for the third-order optical
response functionsRi(t3, t2, t1),44 which are collected in Appendix
A.

3. TFG SE Spectrum

3.1. Response-Function Formalism.The TFG SE spectrum,
which consists of the sequential (S) and coherent (C) contribu-
tions, can be expressed in terms of the third-order optical
response functions as follows:2,14,16

The frequency,ωL, and the envelope,EL(t), characterize the
excitation pulse, whereasω0 and Et(t) are the corresponding
characteristics of the gate pulse. The parameterγ controls the
spectral resolution, so thatγ ) 0 corresponds to an ideal
frequency filter. The formulas (14-16) are valid provided that
the excitation and the SE are treated in the lowest order of the
perturbation theory with respect to system-field interaction and
the rotating-wave approximation is employed (see ref 2 for
details).

Note that the frequency-integrated SE signal

is determined solely by the sequential term, (15), because as is
evident from eq 16

This means that the coherent part at every particulart0 contains,
as a function ofω0, both positive and negative contributions,
which compensate each other upon integration. The overall
signal,S(t0, ω0), is positive, of course.

Within the present article, the time-gate function and the
excitation pulse envelope are chosen as exponentials

This assumption is made frequently in the literature because it
allows the derivation of analytical expressions.4,16,22It has been
demonstrated that the substitution of Gaussian pulse envelopes
by exponential pulse shapes does not give rise to qualitative
differences in the time- and frequency-resolved spectra.11,13The
implementation of the numerically exact method of paper21

shows that this statement holds for overlapping time and gate
pulses even beyond the limit of weak system-pump interaction.

3.2. Results and Discussion.In this section, we present
explicit expressions for the TFG SE spectrum that are obtained
by employing the phenomenological relaxation model for the
third-order optical response functions (Appendix A), the eigen-
value representation for the ground- and excited-state Hamil-
tonians, and exponential envelopes (see eq 18) for the pump
and gate pulses. To get a better understanding of the role of
transient effects, we consider cuts of the TFG SE spectra
calculated for the model system introduced in section 2. In
particular, we examine how the signal is affected by the
vibrational relaxation (νe), OD (êeg), the durations of the pump
and the gate pulses (1/ΓL and 1/Γ) and, finally, by the carrier
frequency (ωL) of the pump pulse.

In the case of a CW pump pulse with a carrier frequency of
the order of the vertical excitation energy, a few neighboring
vibronic levels with large Franck-Condon factors are excited.
WhenωL is increased, higher-lying vibronic levels with smaller
Franck-Condon factors are populated. For the material system
under study, the vertical excitation energy of the bright state is
ε2 ≈ 3.7 Ω. Thus, excitation by a pump pulse with the carrier
frequencies ofωL ) 4, 8, and 12Ω will be referred to as the
cases of small, moderate, and large detuning, respectively. The
carrier frequency of the pump pulse used in the TFG SE
measurements reported in refs 19 and 20 corresponds toωL )
11.5 Ω.

Because we concentrate on the study of ultrafast phenomena,
the pulse durations are chosen to be short on the vibrational
dynamics time scale, and the lifetime of the excited state has
been taken as infinitely large (êe ) 0). The temperature has
been put to zero to emphasize coherent effects. A perfect spectral
filter (γ ) 0) has been assumed in all of the calculations.

3.2.1. Arbitrary Pump Pulse and Short Gate Pulse.First, we
consider the situation when the gate pulse is short on the system
dynamics time scale. In this case, the coherent contribution to
the TFG SE spectrum, eq 16, can be neglected as compared to
the sequential one, eq 15. Omitting the transient terms decaying
with the characteristic time of the gate pulse, while keeping
the transient terms decaying with the characteristic time of the
pump pulse, one arrives at the generalized DW formalism.16

As is shown in detail in Appendix B, the TFG SE spectrum
can be calculated analytically and represented as the sum of
the DW contribution (SDW(t0, ω0)) and the transient terms

Here,θ(t) is the Heaviside step function, the quantitiesΓhL and
ωRn

L are defined via eq B16, andκx,Râ
( are time-independent

coefficients, the explicit form of which can be retrieved from
eqs B10-13. The decay rates of the transient terms are seen to
be determined by the duration of the pump pulse,1/ΓL, and by
the OD rate,êeg, but are independent of the vibrational relaxation
rate, νe, and the lifetime in the excited state,êe. At negative
times, the signal exhibits a monotonic onset,∼exp{2ΓLt0}. This

S(t0, ω0) ≈ θ(-t0)∑
R,â

κ1,Râ
- exp{2ΓLt0} + θ(t0)(SDW(t0, ω0) +

∑
R,â

{κ1,Râ
+ exp{-2ΓLt0} - ∑

n

κ2,Râ
+ (n) exp{-(ΓhL - iωRn

L )t0}})

(19)

S(t0, ω0) ) SS(t0, ω0) + SC(t0, ω0) (14)

SS(t0, ω0) ) Re∫-∞

∞
dt ∫0

∞
dt3∫-∞

t0+t
dt2∫0

∞
dt1

e(iω0 - γ)t3EL(t2 - t1) Et(t + t3) Et(t) EL(t2)

[R1(t3, t + t0 - t2, t1)e
iωLt1 + R2(t3, t + t0 - t2, t1)e

-iωLt1]
(15)

SC(t0, ω0) ) Re∫-∞

∞
dt ∫0

∞
dt3∫t

∞
dt2∫0

∞
dt1

e-(γ - iω0)t3EL(t + t0 - t1) Et(t) EL(t2 + t0)

Et(t3 + t2) R3(t3, t2 - t, t1)e
-iωLt1+(i{ω0 - ωL}-γ)(t2 - t) (16)

S(t) ≡ ∫-∞

∞
dω0 S(t0, ω0) ≡ ∫-∞

∞
dω0 SS(t0, ω0) (17)

∫-∞

∞
dω0 SC(t0, ω0) ≡ 0

EL(t) ) exp(-ΓL|t|) Et(t) ) exp(-Γ|t|). (18)
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onset follows (the square of) the excitation pulse envelope.3,4

The evolution of the signal at positive times is described by
the sum of the DW contribution and the transient terms. The
term that is proportional to exp{-2ΓLt0} mirrors the
signal onset. The second term is proportional to
exp{-(ΓhL - iωRn

L )t0}. It exhibits, in general, an oscillatory
behavior due to the presence of the vibronic frequenciesωRn

L ,
and its magnitude is controlled by the two parameters,êeg and
ΓL.

Let us try to get a more detailed view of typical scenarios of
TFG SE spectra for the case of short gate and arbitrary pump
pulses. To fulfill the conditions of the generalized DW ap-
proximation, we assume an excellent time resolution (Γ ) 5
Ω), and the inverse duration of the pump pulse is given byΓL

) Ω.
The time-dependent cuts of the TFG SE spectra calculated

without dissipative effects (êeg ) νe ) 0) are presented in Figure
2. The upper, middle, and lower panels correspond to the carrier
frequenciesωL ) 4 Ω (Figure 2a and d),ωL ) 8 Ω (Figure 2b
and e), andωL ) 12 Ω (Figure 2c and f), respectively. The left

column (Figures 2a-c) shows the cuts at a central frequency
of the fluorescence spectrum (ω0 ) Ω), whereas the cuts in the
wing (ω0 ) 8 Ω) are shown in the right column (Figure 2d-f).
The exact (generalized DW) results are given as full lines,
whereas the approximate (standard DW) results are shown by
dashed lines.

As expected, att0 > 1/ΓL, when the transient terms vanish,
the standard and generalized DW calculations coincide. The cuts
in the wing (right column in Figure 2) exhibit oscillations with
the fundamental vibrational period of2π/Ω ) 209 fs, whereas
the cuts at the central frequency (left column in Figure 2) show
beatings with a period of approximatelyπ/Ω. This phenomenon
is well known (see, for example, refs 61-63), being a
manifestation of the fact that the wave packet moves over the
potential minimum twice per period. In Figure 2a, b, d, and e,
one also can see slower oscillations with a period of∼410 fs
that are superimposed on the vibrational beatings and represent
electronic coherences caused by the electronic coupling,U12.
Accidentally, the period of these electronic beatings is about
twice the vibrational period in the present model.

Figure 2. TFG SE spectra, calculated without dissipative effects,êeg ) νe ) 0. The inverse durations of the pump and gate pulses areΓL ) Ω and
Γ ) 5 Ω, respectively. Shown are the cuts at the central frequency (ω0 ) Ω in a-c) and in the wing of the fluorescence spectra (ω0 ) 8 Ω in d-f)
for the cases of small, moderate, and large detunings. (The carrier frequency of the pump pulse isωL ) 4 Ω in a and d,ωL ) 8 Ω in b and e, and
ωL ) 12 Ω in c and d.) The solid lines show the exact (generalized DW) results, and the dotted lines show the results of the standard DW theory.
The dot-dashed curve in Figure 2a is computed with the same parameters as above but withêeg ) Ω.
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The increase of the carrier frequency,ωL, does not lead to
any significant changes of the long-time behavior but results in
the overall intensity loss. Of our primary interest, however, is
the short-time (|t0| < 1/ΓL) behavior of the cuts. One can clearly
see an onset∼θ(-t0) exp{2ΓLt0}of the exactly calculated signal.
If the pump-pulse frequency detuning is small, then the exact
and DW cuts at the central frequency differ only slightly (Figure
2a), whereas those in the wing of the spectrum may differ by a
factor of 2 (Figure 2d). If the pump-frequency detuning increases
(middle panel, Figure 2b and e), then the cuts start to develop
a peak in the vicinity oft0 ≈ 0 (compare with ref 56). The ratio
of the peak intensity to the overall intensity of the signal at
longer times increases with detuning and, forωL ) 12 Ω,
reaches a value of∼10 (lower panel, Figure 2c and f).

The influence of the environment on the TFG SE spectra is
illustrated in Figure 3. The cuts are calculated with the same
parameters as in Figure 2c (ω0 ) Ω, ΓL ) Ω, ωL ) 12 Ω) as
well as with vibrational damping (νe ) Ω/3 andêeg ) 0 in Figure
3a) or OD (êeg ) Ω andνe ) 0 in Figure 3b). The combined
effect of vibrational relaxation and OD (êeg ) Ω, νe ) Ω/3) is

shown in Figure 3c. As is clearly seen from the comparison of
Figures 2c and 3a, the detuning-induced peak in the vicinity of
t0 ≈ 0 is unaffected by vibrational relaxation. The latter damps
vibrational and electronic coherences and induces a decrease
of the overall signal.48 As for the OD, it reduces the height of
the peak att0 ≈ 0, thereby improving the quality of the DW
description (Figure 3b and c).

Note that the influence of the OD on the TFG SE spectrum
can turn from an overall decrease of the signal intensity, if the
pump-pulse frequency detuning is small (the dot-dashed curve
in Figure 2a has been computed with the same parameters as
the solid line in this figure, but for the OD rateêeg ) Ω), to an
enhancement of the signal, if the detuning is high (compare
Figures 2c and 3b). This is a realization of the turnover behavior
that has been studied in more detail elsewhere.21,49-55 However,
the cut in Figure 3b resembles the cut in Figure 2a (dot-dashed
curve) very much, although the intensities of the two differ
dramatically. This indicates that the OD renders the shape of
the cut, in contrast to its magnitude, much less sensitive to the
pump-pulse carrier frequency detuning.

The reason of the appearance of the peak aroundt0 ≈ 0 can
be understood by inspection of eq 19. In contrast to the
excitation by a pump pulse with a small carrier frequency
detuning, a large detuning of the pulse leads to the excitation
of many higher-lying vibronic levels with small Franck-Condon
factors. These levels possess high vibronic frequencies, so that
the oscillating factors, exp{iωRn

L t0}, in eq 19 run rapidly out of
phase. In the vicinity oft0 ≈ 0, however, all of the oscillatory
terms are synchronized and the signal has a pronounced
maximum. If the contribution from a particular pair of vibronic
levels (R, n) dominates that from all other levels due to a
favorable Franck-Condon factor,VRn, then several small-
amplitude oscillations with the corresponding frequency,ωRn

L ,
may show up in the cuts. In Figures 2c, 2f, and 3a, for example,
a few low-amplitude beatings are seen following the peak att0
≈ 0, which correspond toωRn

L ) 4 Ω.

The peak att0 ≈ 0 is independent of the vibrational dissipation
rate, and its shape is asymmetric. The left part (t0 < 0) is
determined by the square of the pump-pulse envelope,
exp{2ΓLt0}. The right part (t0 > 0) depends on the OD rate. If
êeg ) 0, then the peak falloff time is twice as long as the onset
time. If the OD increases, then the falloff time decreases. Thus,
analogously to what has been suggested in ref 22 and imple-
mented in refs 34-36 for pump-probe signals, measurements
of the TFG SE spectra with different pump-pulse durations
allow for the estimation of the OD rate.

The peak att0 ≈ 0 is reminiscent of the “coherent artifact”,
which occurs in optical signals when the pulses overlap.22-43

An important difference has to be emphasized, however. The
TFG SE spectra that are calculated within the generalized DW
approximation via eq 19 are determined solely by the sequential
contribution (15), and the height of the peak att0 ≈ 0 depends
on the carrier frequency detuning. The coherent spike in pump-
probe spectra, however, is determined by both the sequential
(pump precedes probe) and the coherent (probe precedes pump)
contributions (see, for example, the discussion in ref 23).
Moreover, the conditions for the appearance of the coherent
spike in pump-probe spectra and the detuning-sensitive peak
in TFG SE spectra are quite different and, in several respects,
opposite. The coherent spike in pump-probe signals appears
in the case of a large OD rate and also exists for small pump-
pulse carrier-frequency detunings,22,34-36 whereas the peak in

Figure 3. Cuts of the TFG SE spectrum calculated with the same
parameters as in Figure 2c but taking into account dissipative effects.
(a): νe ) Ω/3, êeg ) 0; (b): êeg ) Ω, νe ) 0; (c): êeg ) Ω, νe ) Ω/3.
The solid lines show the exact (generalized DW) results, and the dotted
lines show the results of the standard DW theory.
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the TFG SE spectra described above exists only in the case of
a small OD rate and moderate-to-large pump carrier-frequency
detunings.

The inspection of Figures 2 and 3 reveals that the DW
description requires a slippage of the initial condition57-59 to
ensure the coincidence of the DW and exact results att0 > 1/ΓL.
This observation may have important consequences if one tries
to fit experimental TFG SE spectra within the DW approxima-
tion. If the OD is high enough and/or the pump-pulse carrier
frequency detuning is small, then one can neglect the slippage
safely and assume that the maximum of the actual signal
coincides with the maximum of the signal calculated within the
DW approximation. If, however, the OD is weak and/or the
pump-pulse carrier frequency detuning is large, such an
identification may lead to completely incorrect results (see
Figures 2c, 2f, and 3a). In this case, the DW approximation
can be used only to fit the signal att0 > 1/ΓL.

3.2.2. Arbitrary Pump Pulse and Arbitrary Gate Pulse.Let
us now relax the assumption of the previous section (neglect
of the transient terms arising due to the finiteness of the gate
pulse) and assume both the pump and the gate pulses to be of
arbitrary duration. In contrast to the generalized DW approach,
in which the signal is fully determined by the sequential
contribution, taking into account all of the transient terms allows
us to elucidate the significance of the coherent contributions to
the TFG SE spectra.

The eigenvalue representation (eq 5) and the exponential pulse
envelopes (eq 18) allow us to perform all of the time integrations
in eqs 15 and 16 analytically.60 The result reads:

The TFG SE spectrum is seen to be determined uniquely by
the quantityΨ(x2, y2, x1, y1; t0), which is a function of the
parameters

(hereafter, the explicit dependence ofΨ(t0) on x2, y2, x1, andy1

is suppressed for simplicity of notation). The functionsΨ(t0)
can be split into the sequential and coherent contributions,
which, in turn, are determined by different expressions at
positive and negative times:

The explicit time dependence of the quantitiesΨ(
l (t0) is the

following (see also ref 4):

The Ψj
i coefficients are rather cumbersome algebraic func-

tions of the parameters (21). These quantities are available
analytically, but knowing their explicit form adds nothing
profound to the present discussion. Much more important is the
fact that eqs 23-26 give the explicit time-dependence of
Ψ(t0), and thereby of the TFG SE spectrum.

Let us first consider sequential terms 23 and 24. Evidently,
Ψ+1

S represents the DW contribution to the TFG SE spectrum.
All of the other terms may be regarded as transient terms
because they decay with the characteristic times of the pump
and gate pulses. These transient terms can be subdivided into
two groups: those decaying monotonically and oscillatory,
respectively. At positive times, the oscillatory terms decay as
exp{-ΓLt0} or exp{-Γt0}, whereas the monotonically decaying
terms are damped twice as rapidly. At negative times, all of
the terms decay monotonically. The onset of the signal is thus
almost featureless, and the vibrational structure of the TFG SE
spectrum at negative times is represented by the coherent terms
(the contribution∼Ψ-3

C in eq 26).
All of the terms constituting the coherent contribution, eqs

25 and 26, can be regarded as transient terms. As functions of
time, both Ψ+

S(t0) and Ψ+
C(t0) have a similar structure (of

course, the coefficientsΨj
S andΨj

C depend on parameters (21)
in a different way), except the termsΨ+1

C and Ψ-3
C , which

decay as exp{-(Γ + ΓL)|t0|}. These contributions are unique
in the sense that they describe a kind of interference between
the pump and gate pulses and are negligible provided one of
the two pulses is short enough. All of the other terms decay
either with the characteristic time of the pump or the gate pulse.

As in the previous section, we first consider dissipation-free
conditions (êeg ) νe ) 0). Figure 4 shows the sequential and
coherent contributions (dashed and dot-dashed lines, respec-
tively) as well as the total cut of the TFG SE spectrum (solid
line) at the emission frequencyω0 ) ωL, at which the coherent
contribution reaches its maximum. The cuts in the upper (Figure
4a and c) and lower (Figure 4b and d) panels correspond to
small (ωL ) 4 Ω) and moderate (ωL ) 8 Ω) carrier-frequency
detuning of the pump pulse, respectively. The cuts in the left
column (Figure 4a and b) have been computed for pump and
gate pulses with the inverse durationsΓL ) Γ ) Ω. The cuts in
the right column (Figure 4c and d) correspond to pulses that
are three times longer,ΓL ) Γ ) Ω/3. The durations of the
pulses,1/Ω ) 33 fs and3/Ω ) 100 fs, can nonetheless be regarded
as rather short on the time scale of vibrational dynamics
(2π/Ω ) 209 fs).

When the pulses are short and the frequency detuning is small,
the relative magnitudes of the sequential and coherent contribu-
tions in the vicinity of t0 ≈ 0 differ by a factor of 2 (Figure
4a). The presence of the coherent contribution does not change
the behavior of the signal qualitatively. However, its significance
grows dramatically with the increase of either the carrier-
frequency detuning (Figure 4b) or the pulse durations (Figure
4c). The short time (|t0| < 1/Γ) evolution of the cuts in Figure
4b and c is seen to be dominated strongly by the coherent
contribution and cannot be reproduced by the sequential one.

S(t0, ω0) ) ∑
R,â;m,n

VRnVRmVânVâmFg
B(n) Ψ(x2, y2, x1, y1; t0) +

∑
R,â;m,n

VRn
2 Vâm

2 Fg(n) Fe(â)[Ψ(-êe, y2, êe, y1; t0) -

Ψ(z2, y2, z1, y1; t0)] (20)

x1 ) iωâR + νe + êe y1 ) -ωân
L - êeg z1 ) νe + êe

x2 ) iωRâ - νe - êe y2 ) iωâm
0 - êeg - γ

z2 ) -νe - êe (21)

Ψ(t0) ) ∑
l)S,C

[θ(-t0) Ψ-
l (t0) + θ(t0) Ψ+

l (t0)] (22)

Ψ+
S(t0) ) Ψ+1

S exp{x2t0} + Ψ+2
S exp{(y1 - ΓL)t0} +

Ψ+3
S exp{(y2 - Γ)t0} + Ψ+4

S exp{-2ΓLt0} +

Ψ+5
S exp{-2Γt0} (23)

Ψ-
S(t0) ) Ψ-1

S exp{2ΓLt0} + Ψ-2
S exp{2Γt0} (24)

Ψ+
C(t0) ) Ψ+1

C exp{(x2 - Γ - ΓL)t0} +

Ψ+2
C exp{(y1 - ΓL)t0} + Ψ+3

C exp{(y2 - Γ)t0} +

Ψ+4
C exp{-2ΓLt0} + Ψ+5

C exp{-2Γt0} (25)

Ψ-
C(t0) ) Ψ-1

C exp{2ΓLt0} + Ψ-2
C exp{2Γt0} +

Ψ-3
C exp{(x2 + Γ + ΓL)t0} (26)

3592 J. Phys. Chem. A, Vol. 109, No. 16, 2005 Gelin et al.



If both the pulse durations and the frequency detuning increase,
then the coherent contribution determines the cut almost solely
(Figure 4d). Thus, in contrast to pump-probe spectra,42 the
neglect of contributions due to overlapping pulses may not only
overestimate but also substantially underestimate the TFG SE
signal at short times.

The coherent contribution can become substantial not only
in the positive domain but also in the negative domain. Figure
5 depicts the cuts atω0 ) 3.5 Ω, which are computed with
short pump and gate pulses (ΓL ) Γ ) Ω) and moderate
detuning (ωL ) 8 Ω). The coherent and sequential contributions
at |t0| < 1/Γ are seen to have almost the same magnitudes but
opposite signs. Interestingly, the total cut coincides almost

completely with its DW counterpart att0 > 0. As is clearly
seen from Figure 6, this is caused by the cancellation of two
large correction terms.

As has been demonstrated in the previous section, the major
effect of vibrational relaxation on the TFG SE spectrum is the
overall reduction of the signal intensity. The role of OD,
however, is more intriguing. It is well known for steady-state
SE spectra that the widths of the Raman lines, in contrast to
the fluorescence lines, are almost unaffected by the OD.
However, the increase of OD redistributes the SE intensity to
the fluorescence at the expense of the Raman contribution.2 In
the time domain, the situation is rather different. As is clearly

Figure 4. Cuts of the TFG SE spectrum atω0 ) ωL, calculated neglecting dissipative effects (νe ) êeg ) 0). The inverse durations of the pump
and gate pulses areΓL ) Γ ) Ω in a and b, andΓL ) Γ ) Ω/3 in c and d. The upper and lower panels correspond to small and moderate detunings,
respectively (ωL ) 4 Ω in a and c andωL ) 8 Ω in b and d). The signal is shown by the solid line, whereas the sequential and coherent contributions
are represented by the dashed and dotted-dashed lines, respectively.

Figure 5. Cut of the TFG SE spectrum atω0 ) 3.5Ω for short pump
and gate pulses (ΓL ) Γ ) Ω), moderate detuning (ωL ) 8 Ω),
calculated neglecting dissipative effects (νe ) êeg ) 0). The signal is
shown by the solid line, whereas the sequential and coherent contribu-
tions are represented by the dashed and dotted-dashed lines, respectively.
The standard DW result is indicated by the long-dashed line.

Figure 6. Cut of the TFG SE spectrum atω0 ) ωL, calculated with
relatively long pump and gate pulses (ΓL ) Γ ) Ω/3), moderate detuning
(ωL ) 8 Ω) and OD rateêeg ) Ω. Vibrational relaxation is not taken
into account (νe ) 0). The signal is shown by the solid line, whereas
the sequential and coherent contributions are represented by the dashed
and dotted-dashed lines, respectively.
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seen from eqs 23-26, some of theΨ+q
l terms are proportional

to exp{-êegt0}, whereas the others are independent of the OD
rate. Thus, in every particular case, the significance of the
influence of the OD is determined by the relative importance
of these two kinds of terms.

To illustrate this statement, we present several cuts of the
TFG SE spectrum calculated for pump and gate pulses withΓL

) Γ ) Ω/3 and moderate detuning (ωL ) 8 Ω). The vibrational
relaxation has been neglected (νe ) 0). The cut atω0 ) ωL

computed with a moderate OD (êeg ) Ω) is shown in Figure 6.
The comparison of this cut with its counterpart calculated with
êeg ) 0 (Figure 4d) does not reveal a substantial effect of the
OD on the coherent contribution, whereas the role of the
sequential contribution increases. A completely different situ-
ation is presented in Figure 7 showing the cuts atω0 ) 0.8 Ω
calculated without OD (a,êeg ) 0) and with a moderate OD (b,
êeg ) Ω). The influence of the OD on the coherent contribution
is seen to be enormous: it practically disappears. Parenthetically,
the sequential contribution in Figure 7a attains negative values,
which is a rather unexpected finding.

Note finally that if the pump and gate pulses are (much)
longer than the system vibrational period, then the sequential
and coherent contributions (and thus the TFG SE spectrum itself)
depend significantly not only on the magnitude of the pump
carrier frequency detuning but also on whether the carrier
frequency is in resonance with a particular transition to a
vibronic level of the optically bright state (see, for example,
refs 5, 16, and 21).

4. Conclusions

We have explored the short-time behavior of TFG SE spectra,
when the pump and gate pulses overlap and their durations are
shorter than or comparable with the time scale of the system
dynamics. A model of the material dynamics that accounts for
strong nonadiabatic and electron-vibrational coupling effects
as well as for dissipative effects has been chosen to represent
generic photoinduced excited-state dynamics in large molecules
in the gas phase or in condensed phases. The analysis has been
carried out analytically by the incorporation of a phenomeno-
logical relaxation model44 into the generalized DW framework16

and beyond. The present approach allowed us to single out the
sequential and coherent contributions, as well as the DW-
contribution, to the TFG SE spectrum and to study their
dependence on pump and gate pulse carrier frequencies and
durations, vibrational relaxation, and the OD rate separately.

If the temporal resolution is perfect and the coherent
contribution can thus be neglected, then the TFG SE spectra
excited with moderate or large frequency detuning have been
shown to exhibit a pronounced feature centered at zero gate-
pulse delay, provided the OD is weak. This peak is caused
exclusively by the sequential (pump precedes gate) contribution
to the TFG SE spectrum. This phenomenon cannot be repro-
duced within the standard DW approximation, implying that
the validity of the latter depends on the pump-pulse carrier
frequency detuning.

If both the pump and gate pulses are short on the time scale
of the system dynamics, then the interplay between the
sequential and coherent contributions to the TFG SE has been
found to be very sensitive to the pump-pulse carrier-frequency
detuning and the OD rate. This fact allows, in principle, the
experimental determination of the OD rate. It has been shown
that the coherent contribution dominates the TFG SE spectrum
at specific SE frequencies.
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Appendix A

As has been demonstrated in ref 44, the third-order optical
response functions of a dissipative material system can be
expressed through those of the corresponding bath-free system.
Explicitly64

The excited-state population decay rate,êe, the OD rate,êeg,
and the vibrational relaxation rates,νa (a ) e, g), have been

Figure 7. Cuts of the TFG SE spectrum atω0 ) 0.8 Ω, calculated
with the same pump- and gate-pulse parameters as in Figure 6. (a)êeg

) 0; (b) êeg ) Ω. Vibrational relaxation is not taken into account (νe

) 0). The signal is shown by the solid line, whereas the sequential
and coherent contributions are represented by the dashed and dotted-
dashed lines, respectively.

R1(t3, t2, t1) ) exp{-êeg(t1 + t3) - êet2} ×
[R1(t3, t2, t1)

fr exp{-νet2} + Jg(t1)Je(t3)(1 - exp{-νet2})]
(A1)

R2(t3, t2, t1) ) exp{-êeg(t1 + t3) - êet2} ×
[R2(t3, t2, t1)

fr exp{-νet2} + Jg
/(t1)Je(t3)(1 - exp{-νet2})]

(A2)

R3(t3, t2, t1) ) exp{-êeg(t1 + t3)} ×
[R3(t3, t2, t1)

fr exp{-νgt2} + Jg
/(t1)Jg(t3)(1 - exp{-νgt2})]

(A3)
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defined in eqs 10 and 11. The third-order bath-free optical
response functions are defined explicitly as usual:2

The quantities

and

are the first-order optical response functions, the Fourier
transforms of which represent the linear absorption and relaxed
fluorescence spectra, respectively.2 The Boltzmann operators
Fa(a ) e,g) are defined in eq 13.

Appendix B

Let us neglect the transient terms decaying with the charac-
teristic time of the gate pulse, while keeping all the transient
terms decaying with the characteristic time of the pump pulse.
In doing so, one arrives at the generalized DW approximation.
In that case, as has been demonstrated in ref 16, one can drop
the coherent contribution (16) to the TFG SE spectrum and put
t ) 0 in the upper integration limit overt2 in eq 15. We
additionally assume that the gate pulse is short on the time scale
of vibrational dynamics and relaxation, thereby implying that
the time resolution is perfect. This allows us to putt ) 0
everywhere under the integral sign in eq 15. A straightforward
analysis then shows that the TFG SE spectrum can be
represented as the sum of “free” and “relaxed” contributions
(compare with ref 44):

Here, the generalizedD operator and theW operator are
determined via the expressions

in which

The excited-state propagators are defined as follows:

In the derivation of the above expressions, we did take account
of bath-induced vibrational relaxation during the pump pulse.
The free and relaxedW functions (B5) and (B7) are time-
independent and are identical with their standard counterparts.44

The generalizedD functions (B4) and (B6), however, are
t0-dependent. They reduce to their conventional analogues in
the limit of well-separated pump and gate pulses.44

Adopting the eigenvalue representation for the ground- and
excited-state Hamiltonians (5) and using the exponential pulse
envelopes (18), one can perform all of the time integrals in eqs
B2 and B3 analytically65 with the result

The generalized time-dependentD function

(θ(t) is the Heaviside step function) is explicitly defined as
follows:

The W functions are defined through the quantity

R1
fr (t3, t2, t1) ) Tr[exp{iHgt1}Vge exp{iHet2}Veg

exp{iHgt3}Vge exp{-iHe(t1 + t2 + t3)}VegFg] (A4)

R2
fr (t3, t2, t1) ) Tr[Vge exp{iHe(t1 + t2)}Veg

exp{iHgt3}Vge exp{-iHe(t2 + t3)}Veg exp{-iHgt1}Fg], (A5)

R3
fr (t3, t2, t1) ) Tr[Vge exp{iHet1}Veg

exp{iHg(t2 + t3)}Vge exp{-iHet3}Veg exp{-iHg(t1 + t2)}Fg]
(A6)

Jg(t) ) Tr[exp{iHgt}Vge exp{-iHet}VegFg] (A7)

Je(t) ) Tr[exp{iHet}Veg exp{-iHgt}VgeFe] (A8)

S(t0, ω0) ≈ Tr[Wfr(ω0)G
fr(t0)D

fr(t0,ωL)] +

Wrel(ω0)G1
rel(t0)D1

rel(t0, ωL) - Wrel(ω0)G2
rel(t0)D2

rel(t0, ωL)
(B1)

Dj(t0, ωL) ) ∫-∞

t0 dt2∫0

∞
dt1 EL(t2) EL(t2 - t1)

exp{(iωL - êeg)t1 + êet2}Dj(t2, t1) + H.c. (B2)

Wj(ω0) ) ∫0

∞
dt3 Et(t3) exp{(iω0 - γ - êeg)t1}Wj(t3) + H.c.

(B3)

Dfr(t2, t1) ) e(iHe+νe)t2e-iHet1VegFg
eqeiHgt1Vgee

-iHet2 (B4)

Wfr(t3) ) Vege
iHgt3Vgee

-iHet3 (B5)

D1
rel(t2, t1) ) Jg(t1) D2

rel(t2, t1) ) eνet2Jg(t1) (B6)

Wrel(t3) ) Je(t3) (B7)

Gfr(t0)X ) e-iHet0XeiHet0e-(νe+êe)t0 ∀X (B8)

G1
rel(t0)X ) e-êet0X G2

rel(t0)X ) e-(νe+êe)t0 X ∀X (B9)

S(t0, ω0) ) ∑
R,â

exp{-(iωRâ + νe + êe)t0}

DRâ(t0, νe + êe) WRâ(ω0) + exp{-êet0}

∑
R

{DRR(t0, êe) - exp{-νet0}DRR(t0, νe + êe)}W(ω0) (B10)

DRâ(t, y) ≡ ∑
n

VRnVnâFg
B(n){θ(-t)ΦRâ;n

- (t, y) +

θ(t)ΦRâ;n
+ (t, y)} (B11)

ΦRâ;n
- (t, y) )

exp{(2ΓL + y + iωRâ)t}

(2ΓL + y + iωRâ)(ΓhL - iωRn
L )

+ H.c. (B12)

ΦRâ;n
+ (t, y) ) 1

(2ΓL + y + iωRâ)(ΓhL - iωRn
L )

+

1 - exp{-(ΓhL - y - iωân
L )t}

ΓhL - y - iωân
L

×

{ 1

ΓhL - iωRn
L

+ 1
2ΓL - y - iωRâ} -

exp{-(ΓhL - y - iωân
L )t}(1 - exp{-(ΓL - êeg + iωRn

L )t})

(2ΓL - y - iωRâ)(ΓL - êeg + iωRn
L )

+

H.c. (B13)

ΨRâ(ω0) ) { Γ
Γ - iωRn

0
+ Γ

Γ - iωân
0 } + H.c.
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as

Thus, the choice of the exponential gate-pulse envelope (18)
gives rise to simple Lorentzian SE line shapes. The Boltzmann
factors are written as

and the rest of the parameters are defined as follows:

The above expressions generalize those derived in ref 44 because
we (i) account for the transient terms, (ii) do include dissipation
during the pump pulse, and (iii) calculate the TFG SE signal at
an arbitrary time-∞ < t0 < ∞.

Inspection of eqs B12 and B13 reveals the following.
Equation B12 describes the only contribution that exists at
negative times, during the build up of the TFG SE signal. The
onset of the signal is featureless and monotonic because it is
described by the factorθ(-t0) exp{2ΓLt0}. The term B12 reaches
its maximum att0 ) 0 and constitutes one of the contributions
to the standard D function at positive times (the first term in eq
B13). All of the other contributions to eq B13 are identically
zero att0 ) 0 and exist only for positive times. They consist of
time-independent terms (which enter the standard D function)
and transient terms.

It is important to note that the TFG SE signal reaches its
maximum not att0 ) 0 (which corresponds to the maximum of
the excitation pulse,EL(t0)) but at a later time. Indeed, the time
derivative of the generalized D function (45) att0 ) +0 is
proportional to ΓhL/(ΓhL

2 + (ωRn
L )2) > 0. Thus, as has been

demonstrated in ref 4 for three-level systems, the TFG SE signal
keeps growing after the excitation pulse has reached its
maximum. This conclusion is not a consequence of the specific
dissipation model employed. It holds even in the bath-free case
(νe ) êeg ) 0). The same applies also to pump-probe
signals.22,34,36,37

The explicit expression for the frequency-integrated SE signal,
S(t0), is also given by eq B10 in which one has to substitute

As is easy to verify, the frequency-integrated SE signal
determined in this way is connected with the “exact” one,
St(t0) (which is obtained by direct integration of eq 15 and is
thus valid for any gate-pulse duration and at anyt0), by a simple
convolution:

Note, finally, that a very similar analysis can be carried out
for pump-probe spectra, as outlined in ref 67.
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W(ω0) ) ∑
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VRn
2 ΨRR(ω0) Fe

B(R) (B14)

Fg
B(n) ) Zg

-1exp{-εn

kT } Fe
B(R) ) Ze

-1exp{-εR

kT } (B15)

ΓhL ≡ ΓL + êeg ωRn
L ≡ ωL - ωRn ωRn

0 ≡ ω0 - ωRn

(B16)

WRâ(ω0) f WRâ ) ∑
n

VRnVnâ

W(ω0) f W ) ∑
R;n

VRn
2 Fe

B(R) (B17)
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∞
dt Et
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(59) Mančal, T.; May, V. J. Chem. Phys.2001, 114, 1510.
(60) From the computational point of view, it is more efficient to

calculate the TFG SE spectrum starting, for example, from eq 2.18 of paper,7

in which there is no separation of the SE into S and C components. In

doing so, one can represent the TFG SE spectrum as a sum of squares of
particular amplitudes (see also ref 8). Our aim is, however, to study the
behavior of the S and C components separately.

(61) Jonas, D. M.; Bradforth, S. E.; Passino, S. A.; Fleming, G. R.J.
Phys. Chem.1995, 99, 2594.

(62) Jean, J. M.J. Chem. Phys.1994, 101, 10464.
(63) Kumar, A. T. N.; Rosca, F.; Widom, A.; Champion, P. M.J. Chem.

Phys.2001, 114, 701.
(64) Note a misprint in ref 44: In eqs 19 and 20 of that paper, one

must replaceJe(t3) with Jg(t3).
(65) If Gaussian pulse envelopes are used, the results can be expressed

in terms of complex error functions; compare with refs 7, 42, and 66.
(66) Balzer, B.; Stock, G.J. Phys. Chem. A2004, 108, 6464.
(67) Gelin, M. F.; Pisliakov, A. V.; Domcke, W. InFemtochemistry

and Femtobiology; Martin, M. M., Hynes, J. T., Eds.; Elsevier: Amsterdam,
2004; p 311.

Transient Phenomena in Spontaneous Emission J. Phys. Chem. A, Vol. 109, No. 16, 20053597


